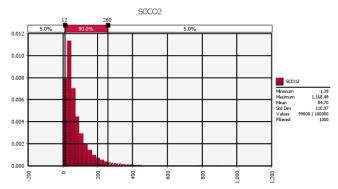
Some Thoughts on the Value Added from a New Round of Climate Change Damage Estimates

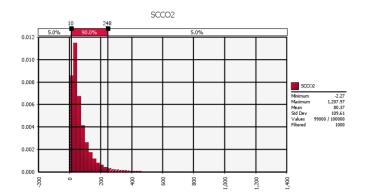
Gary Yohe^{a c} and Chris Hope^b

EPA/DOE Workshop on Improving the Assessment and Valuation of Climate
Change Impacts for Policy and Regulatory Analysis:
Research on Climate Change Impacts and Associated Economic Damages

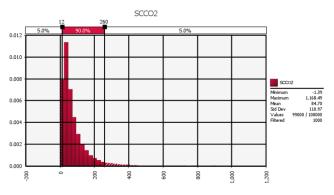
January 28, 2011

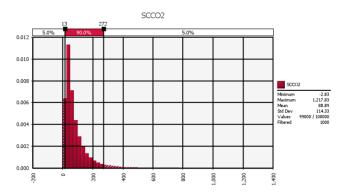

Outline of Brief Remarks

- More complete paper available.
- Section 1 Issues with Coastal Storms.
- Section 2 Type 3 Error Barking up the wrong tree means very little value added.
- Section 3 There is an alternative the Limiting Panel plus iteration – here is value added for an aggressive research agenda.
- Economic analyses of impacts help ID places where adaptation would be important; "laugh test context for the alternative.


Experiment Results - SCC

Case	Min	5 th	Mean	95 th	99 th	Max	Mean of Lower 99%	Contribution of Top 1% to Mean	
Default	-\$4	\$12	\$106	\$259	\$1191	\$12215	\$85	20%	
	Symme	tric defa	ult setting	s for the	economic	: damage ar	nd sea level rise co	alibrations	
Case A	-\$1	\$12	\$106	\$258	\$1168	\$10084	\$85	20%	
\wedge	Ranges for the two economic damage parameters diminished by 50%								
Case B	-\$2	\$10	\$102	\$248	\$1108	\$9131	\$80	22%	
<u></u>	Ranges preserved but distribution skewed with the mode 50% lower								
Case C	-\$3	\$13	\$111	\$272	\$1218	\$13166	\$89	20%	
	Ranges preserved but distributions skewed with the mode 50% higher								


Experiment Results - SCC


Panel A – Default

Panel C – Mode 50% Lower

Panel B – Reduced Range

Panel D – Mode 50% Higher

An Alternative Approach – A Different Tree for Barking with higher Value Added

- Use assessment of climate risk to determine long-term objective and medium-term carbon budget – build the iterative process
- Work within the process to determine US contribution to the budget
- Compute scarcity rent trajectory for the budget (a la Hotelling) and then add details of economic growth, technological development, etc... build the iterative process.
- Use the results to price carbon for non-climate policy needs
- Use IAM results to (1) check the "laugh test", (2) design cost-minimizing approaches (including net economic damage) and (3) highlight areas where adaptation in economic sectors will be most productive.